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Let tn(x) be any real trigonometric polynomial of degree n such that Iltnll Lx ~ L
Here we are concerned with obtaining the best possible upper estimate of

f2' /f2'o (t~k)(X))2'+2 dx 0 (t~k)(X))2' dx

where r;;'O (integer). As a special case we obtain (1.2). Let IItnll L2 and Ilt~)1iL2 be
given where t n is any real trigonometric polynomial. In Theorem 2 we shall obtain
the estimate of Ilt~;JIIL2 in terms of IItnll L2 and Ilt~)IIL2' The results are again the best
possible. © 1991 Academic Press. Inc.

1. INTRODUCTION

A. P. Calderon and G. Klein [1] proved the following theorem for
trigonometric polynomials:

THEOREM A. Suppose that cp(x) is a nonnegative function defined for
nonnegative x and satisfies the condition that (cp(x) - cp(O))/x be a non­
decreasing function of x, x ~ O. Then the maximum of the integral
g" tP(ls~(x)l) dx for all trigonometric polynomials sn(x) of order n, bounded
in absolute value by 1, is achieved by the Chebyshev polynomial cos(nx + a).
If in addition cp(x) is not a constant function, then the Chebyshev polynomial
is the only such polynomial achieving this maximum.

Later Theorem A of Calderon and Klein [1] was extended by L. V.
Taikov [4] and also by G. K. Kristiansen [2]. Under the same conditions
imposed on cp(x) and sn(x) as stated in Theorem A, G. K. Kristiansen
proved (Theorem C of [2]) that

f
~ f~o cp(n-kls~k)(x)l)dx:(; 0 cp(lsinxl)dx.
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In particular, we have
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(1.2)

with equality for sn(x) = cos(nx + IX).

2. MAIN RESULTS

The object of this paper is to prove the following inequality related to
trigonometric polynomials and also obtain (1.2) as a special case. We now
state

THEOREM 1. If tn(x) is a real trigonometric polynomial of order n such
that maxo,,;x,,;2nltn(x)1 < 1, and r is any nonnegative integer, then we have

with equality for tn(x) = cos(nx + IX). Moreover, with repeated application of
(2.1) we have

f2n (t~k)(x)fr+ 2 dx < (2r + l)(2r - 1) ... 5·3·1 n(2r+ 2)k2n. (2.2)
o (2r + 2)(2r) .. ·4·2

Remark. Putting r = 0 in (2.1) we obtain (1.2). Also, (2.2) is a special
case of (1.1 ).

The object of the next theorem is to consider the following problem
related to trigonometric polynomials.

We define

(2.3 )

Next, suppose r is a fixed positive integer such that r~ 2. Given litnil L2 and
Ilt~)IIL2' the problem is to obtain the estimate of Ilt:!)II L2 for
j = 1, 2, ..., r - 1. In this direction we shall prove

THEOREM 2. Let tn(x) be a given real trigonometric polynomial of order
<n. Then we have

rllt~i)IIL <(r- j) n2illtnilL + jn 2i - 2r lltnlL

Moreover, equality holds for tn(x) = cos(nx + IX).

j= 1, 2, ..., r-l. (2.4)
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Remark. Theorem 2 is motivated by the earlier result of the author in
[5J and references mentioned in it.

3. PRELIMINARY

For the proof of Theorem 1, we shall need the following

LEMMA 3.1. Let tn(x) be an arbitrary real trigonometric polynomial of
order n such that maXO";x";2,, It ll(x)l::::; 1. Then we have

Equality is attained for tn(x) = cos(nx + a).

O::::;x::::;2n. (3.1 )

Proof The proof of this lemma is based on an interesting inequality
(G. Szego [3 J). It states that if fn(x) is a real trigonometric polynomial of
order n such that Ifn(x)1 ::::; t, 0::::; x::::; 2x, then

(3.2)

where equality holds for fn(x) = cos(nx +a).
Since Itn(x) ::::; 1, 0::::; x::::; 2n it follows from Bernstein's inequality that, for

O::::;x~2n,

Now, we set fn(x) = t~k- I )(x )!nk - I.

Clearly Ifn(x)1 ~ 1 for 0 ~ x::::; 2n.
Hence, by using (3.2) we obtain

2(t~k-I)(X))2 (t~k)(X))2 2
n k-I +~ ::::;nn n

and

Next, we define

(3.3 )

(3.4)

t~k-l)(X)

a= k-l'n
and (3.5)
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Then (3.3) and (3.4) are respectively equivalent to a2 + b2 ~ 1, b2 + c2 ~ 1.
Thus it easily follows that b2

- ac ~ 1.
Replacing the values of a, b, C from (3.5) we obtain (3.1).

4. PROOF OF THEOREM 1

On multiplying (3.1) by (t~k)(xWr and integrating both sides from 0 to
2n we obtain

(4.1 )

Also, we note that

(4.2)

From (4.1) and (4.2) we obtain

(4.3 )

But (4.3) IS clearly equivalent to (1.4). This completes the proof of
Theorem 1.

5. PROOF OF THEOREM 2

The proof of this theorem is given by induction. Let us define

(5.1 )
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where tn(x) is any trigonometric polynomial of order n. The main idea
behind the proof is the identity

j= 1, 2, ..., (5.2)

which is easy to verify. From (5.2) we obtain

1 n2

Aj~2n2Ai+l+2'Aj-l j= 1, 2... (5.3 )

with equality for tn(x)=cos(nx+a).
From (5.3) follows (2.4) for the case r = 2, j = 1. Next, we note that

1 n
2

1 { 1 n
2

} n
2

Al~2n2A2+2'Ao~2n2 2n2A3+2'A1 +'2 Ao .

On rearranging, we have

(SA)

From this we have

(5.5)

(5.4) and (5.5) prove (2.4) for r = 3 and j = 1, 2, respectively. Next, we
assume that for a given r (2.4) is valid for j = 1,2, ..., r - 1. Now, by using
(5.3 ),

640/65/)·)
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On rearrangement, we have
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Similarly, we obtain the upper estimate of A r _ 1 , A r _ 2, ..., A 2, A 1 in terms
of A r + 1 and A o. This proves Theorem 2 as well.
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